OSLC for Cognitive Cross-Checking of System Models

Carlos C. Insaurralde
Bristol Robotics Laboratory
University of the West of England
Bristol, United Kingdom
Carlos C. Insaurralde, MEng, PgCTLHE, MAst, MPhil, PhD
IEEE Senior Member, HEA Fellow

- US-funded (DoD), UK-funded (MoD) and EU-funded projects
 - US research project in collaboration with the AFRL.
 - UK research projects in collaboration with BAE Systems, Atlas Elektonik, and seabyte.
 - EU research projects in collaboration with Airbus, Eurocopter, Goodrich, Autoflug, ASG, and Seondo Mona.

- Autonomy-based projects
 - Autonomously cross-checked models from multidisciplinary design teams of high-integrity systems.
 - Autonomous decision-making support for avionics analytics.
 - Remote integration of capabilities from autonomous ground vehicles for defence.
 - Automation of distributed aircraft fuel management systems tested in lab and real-scale rigs.
 - Intelligent control architecture for autonomous maritime vehicles.
 - Autonomous reconfiguration of production lines.

- Over 100 publications, including a book and 5 book chapters.
Contents

- Introduction
- Background
- Example
- Approach
- Reflection
Early Efforts to Reduce Costs and Risk

- **Focus:** Dependable Cyber-Physical Systems
- **Feature:** High-integrity; safety, security, etc.
- **Challenge:** SDLC risks & costs increasing
- **Trend:** Pre-verification & pre-validation

- **Target:** Functional & non-functional requirements
- **Constrain:** Multiple models and teams
- **Need:** Agile model cross-checking
- **Problem:** Deadlocks between development Teams
Different Views/Models of the Same System

• One single (unified) system model is impossible
• But it could be a notation-unified system model
• The approach is to merge notation from different domain-specific representations
• To check the impact of each representation on others can quickly be reflected.
Related Existing Technologies

- Integration of Models
 - Cyber-Physical Modelling [1]
 - OSLC
 - MIC (Model-Integrated Computing) [2]
 - CIF (Compositional Interchange Format) [3]

- Multi-View Tools
 - Modelica (control) [4], 20sim (mechatronics) [5]
 - MIC, MVM [6]

- Single-View Tools
 - AADL [7], MARTE [8]
 - SysML, UML
 - COMPASS [9], CRYSTAL [10]
Application Example

• An automatic Flight Control System (AFCS).
• Three distinct models (views) from different engineering disciplines are considered to design the above AFCS:
 • a control engineering model,
 • a software application model
 • a hardware platform model.
• They have different description languages to model the AFCS, e.g. block diagrams, UML diagrams, and AADL diagrams.
• Three application scenarios:
 • a software application model connected to a hardware platform model and a control engineering model.
 • a hardware platform model connected to a software application model and a control engineering model.
 • A control engineering model connected to a hardware platform model and a software application model.
Simplified Example of Aircraft Autopilot

• Simple example but enough to show the idea

• Three disciplines
 - Control engineering
 - Hardware engineering
 - Software engineering

• Stakeholders from each discipline
Three stakeholders
- Control engineer
- Hardware engineer
- Software engineer

HIAS: AFCS or autopilot

Functionality Viewpoint: Controllability, Statefulness, Eventfulness

Allocability Viewpoint: Deployment, Footprint, Power

Performance Viewpoint: Timeliness, Readiness, Predictability

The viewpoint of the control engineer is aligned with functionality which focuses on quality criteria such as controllability (stability), statefulness, and eventfulness.

The viewpoint of the hardware engineer is aligned with allocability which focuses on non-functional requirements such as deployment, footprint, and power.

The viewpoint of the software engineer is aligned with performance which focuses on quality criteria such as timeliness, readiness, and predictability.
1) SW-CW:
 Latency \implies Stability

2) CW-SW:
 Modelling \implies Footprint

3) HW-CW:
 Architecture \implies Strategy

4) CW-HW:
 Data \implies Socket

5) HW-SW:
 Processing \implies Execution

6) SW-HW:
 Coding \implies Footprint
Software Impact on Hardware and Control

<table>
<thead>
<tr>
<th>Software Model Updates</th>
<th>Hardware Model Effects</th>
<th>Control Model Effects</th>
</tr>
</thead>
</table>
| End-to-end latency (QM) | SP: Execution
SE: Task
SC: Processing
QF: Efficiency
QC: Schedulability
QM: Scheduling time
SP: Transmission
SE: Packet
SC: Communication
QF: Efficiency
QC: Responsiveness
QM: Network latency
SP: Delay
SE: Controller
SC: Feedback control
QF: Dependability
QC: Responsiveness
QM: Time response |
| Code size (QM) | SP: Footprint
SE: Memory
SC: Computation
QF: Efficiency
QC: Allocability
QM: Hardware use
SP: Control parameter
SE: Controller
SC: Feedback control
QF: Dependability
QC: Stability
QM: Root Locus, Bode margins |
| Data size (QM) | SP: Storage
SE: Memory
SC: Information
QF: Efficiency
QC: Mem Allocability
QM: Mem use
SP: Bandwith
SE: Network
SC: Information
QF: Efficiency
QC: Network Usability
QM: Network use
SP: Control parameter
SE: Controller
SC: Feedback control
QF: Dependability
QC: Stability
QM: Root Locus, Bode margins |

SP: System Property
SE: System Element
SC: System Capability
QF: Quality Factor
QC: Quality Criteria
QM: Quality Metric
Model Analytics

- HW-SW-HW Example

5) HW-SW:
Processing ⇒ Execution

6) SW-HW:
Coding ⇒ Footprint

changes on the software model affecting the hardware model

changes on the hardware model affecting the software model

Impact Analysis Report

Notation Repository

AADL Hardware Model

UML Software Model
Cloud-Based Framework

• Implementing a cloud-based approach for the framework

• Merging the model notation (parameters) into a single repository for analysis

• Modelling notation includes the functional and non-functional requirements and constraints from different engineering disciplines.
OSCL Cloud-Based Model Analytics

- Relating models
- Cross-checked modelling
- OSCL-based cloud to interconnect models
Ontologies make use of semantic diagrams to easily realize concepts in the ontology and the connections between concepts.

Ontological Notation Repository
Ontological Proof of Concept

- Protégé user interface for the ontology (ONR)
- Relating models and cross-checked modelling
- OSCL-based cloud to interconnect models
Software Model Service

- Application scenario:
 - Software impacts on Hardware

- Software model on the Autonomous Model Analytics (AMA) application

- OSLC service interface for the software model
 - Creation of service
 - Resource shape
 - Query capability
 - Query resource
Software Model Resource Shape

```xml
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:oslc="http://open-services.net/ns/core#">

<oslc:ResourceShape rdf:about="http://host/shapes/swnotationshape"
    dcterms:title="Shape for the software model notation"
    oslc:name="SWNotation"
    oslc:describes rdf:resource="http://host/services/swm#Notation"/>

<!--Resource shape for the software footprint parameter-->
<oslc:property>
    <oslc:Property>
        <oslc:name>SWF</oslc:name>
        <dcterms:title>Software Footprint</dcterms:title>
        <oslc:propertyDefinition rdf:resource="http://host/services/swm#SWF"/>
        <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
        <oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
        <dcterms:description>Use of hardware based on the software size</dcterms:description>
    </oslc:Property>
</oslc:property>

<!--Resource shape for the software performance quality-->
<oslc:property>
    <oslc:Property>
        <oslc:name>SWP</oslc:name>
        <dcterms:title>Software Performance</dcterms:title>
        <oslc:propertyDefinition rdf:resource="http://host/services/swm#SWP"/>
        <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
        <oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
        <dcterms:description>Software performance based on hardware capacity</dcterms:description>
    </oslc:Property>
</oslc:property>
</oslc:ResourceShape>
</rdf:RDF>
```
<?xml version="1.0" encoding="UTF-8">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <oslc:RDF xmlns:oslc="http://open-services.net/ns/core#">
 <oslc:ResourceShape rdf:about="http://host/shapes/swhwlinkqueryshape">
 <dcterms:title>Shape for the software-hardware link</dcterms:title>
 <oslc:type rdf:resource="http://open-services.net/ns/core#ResourceShape"/>
 <oslc:name>SwHwLinkQuery</oslc:name>
 <oslc:describes rdf:resource="http://open-services.net/ns/swm#"/>

 <!-Resource shape for the software-hardware link query-
 <oslc:property>
 <oslc:Property>
 <oslc:name>SWNotation</oslc:name>
 <oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-many"/>
 <oslc:propertyDefinition rdf:resource="http://host/services/swm#Notation"/>
 <oslc:isMemberProperty>true</oslc:isMemberProperty>
 </oslc:Property>
 </oslc:property>
 </oslc:ResourceShape>
 </oslc:RDF>
</rdf:RDF>
Discovery & Retrieve of Service Info

AMA application run service query

Query results are checked

Is the list of services empty?

No

Services are added to the list

AMA application analyses cross-check impact

Yes

User terminates AMA application

Query sample delay

No

AMA application Register model links

Yes
Analysis of Model Information

- A modeling tool notifies the AMA application of a model change.
- The AMA application analyses changes for cross-check.
- Is there any cross-check link between models?
 - Yes: The AMA application sends notification to the impacted model.
 - No: The user of the impacted model deals with the changes.
- User terminates AMA application.
- No: The user of the impacted model deals with the changes.
- Yes: The user of the impacted model deals with the changes.
Reflective Remarks

• Impacts from **model updates** on other models cannot necessarily to implement in **real time**

• **Benefits** from the model cross-checking framework **but** is **complex** by nature; toward **process automation**

• Model impacts can be also used for **performance assessment**

• **OSCL** is a **good driver** for the framework. However, it will add some **complexity** to the **framework**.

• **OSCL** facilities the **model interconnections** for cross-checking impact but a lot of work on **producing** the XML files

• **Need for an automated process** for the **generation** of **OSLC interfaces** for the framework

• **Future work**: development of framework prototype
References

